Hunting glueballs with BESIII

Complutense University of Madrid, April 3rd, 2019
A. Rodas

JPAC/BESIII: A workshop on Theory-Experiment collaboration.

Index

1 Introduction
1.1 Motivation
1.2 Data

2 Method

3 Coupled channel

4 Future prospects

This work: Motivation

- In this talk: Ongoing phenomenological analysis on spectroscopy
- Ordinary hadrons \rightarrow Boring!!

- Not so ordinary \rightarrow Not today!

This work: Motivation

- In this talk: Glueball spectroscopy?
- Hybrid \rightarrow part of this talk

. Glueball

This work: Motivation

- Glueball expected at around $1.5-2 \mathrm{GeV}$.
- $J^{P C}=0^{++} \rightarrow$ lightest glueball candidate(s).

$J^{P C}$	Other J	$r_{0} m_{G}$	$m_{G}(\mathrm{MeV})$	
0^{++}		$4.21(11)(4)$	$1730(50)(80)$	
2^{++}		$5.85(2)(6)$	$2400(25)(120)$	
0^{-+}		$6.33(7)(6)$	$2590(40)(130)$	
0^{*++}		$6.50(44)(7)^{\dagger}$	$2670(180)(130)$	
1^{+-}		$7.18(4)(7)$	$2940(30)(140)$	
2^{-+}		$7.55(3)(8)$	$3100(30)(150)$	
3^{+-}		$8.66(4)(9)$	$3550(40)(170)$	
0^{*-+}		$8.88(11)(9)$	$3640(60)(180)$	
3^{++}	$6,7,9, \ldots$	$8.99(4)(9)$	$3690(40)(180)$	
1^{--}	$3,5,7, \ldots$	$9.40(6)(9)$	$3850(50)(190)$	
2^{*-+}	$4,5,8, \ldots$	$9.50(4)(9)^{\dagger}$	$3890(40)(190)$	
2^{--}	$3,5,7, \ldots$	$9.59(4)(10)$	$3930(40)(190)$	
3^{--}	$6,7,9, \ldots$	$10.06(21)(10)$	$4130(90)(200)$	
2^{+-}	$5,7,11, \ldots$	$10.10(7)(10)$	$4140(50)(200)$	
0^{+-}	$4,6,8, \ldots$	$11.57(12)(12)$	$4740(70)(230)$	

PDG status

- Glueball expected at around $1.5-2 \mathrm{GeV}$.
- Three different candidates measured close by.

$f_{0}(1370)\left[{ }^{[]]}\right.$	$I^{G}\left(J^{P C}\right)=0^{+}\left(0^{+}+\right)$	
Mass $m=1200$ to 1500 MeV Full width $\Gamma=200$ to 500 MeV		
$\mathrm{f}_{0}(1370)$ DECAY MODES	Fraction ($\left.\Gamma_{i} / \mathrm{r}\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$\pi \pi$	seen	672
4π	seen	617
$4 \pi^{0}$	seen	617
$2 \pi^{+} 2 \pi^{-}$	seen	612
$\pi^{+} \pi^{-2} \pi^{0}$	seen	615
$\rho \rho$	dominant	\dagger
$2(\pi \pi)_{S \text {-wave }}$	seen	-
$\pi(1300) \pi$	seen	\dagger
$a_{1}(1260) \pi$	seen	35
$\eta \eta$	seen	411
$K \bar{K}$	seen	475
$K \bar{K} n \pi$	not seen	\dagger
6π	not seen	508
$\omega \omega$	not seen	
$\gamma \gamma$	seen	685
$e^{+} e^{-}$	not seen	685

$$
f_{0}(1500)^{[n]} \quad \quad I^{G}\left(J^{P C}\right)=0^{+}\left(0^{++}\right)
$$

Mass $m=1504 \pm 6 \mathrm{MeV} \quad(\mathrm{S}=1.3)$
Full width $\Gamma=109 \pm 7 \mathrm{MeV}$

$\boldsymbol{f}_{\mathbf{0}} \mathbf{(1 5 0 0)}$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Scale factor	ρ $(\mathrm{MeV} / \mathrm{c})$
$\pi \pi$	$(34.9 \pm 2.3) \%$	1.2	740
$\pi^{+} \pi^{-}$	seen		739
$2 \pi^{0}$	seen		740
4π	$(49.5 \pm 3.3) \%$	1.2	691
$4 \pi^{0}$	seen		691
$2 \pi^{+} 2 \pi^{-}$	seen		686
$2(\pi \pi)_{S \text {-wave }}$	seen		-
$\rho \rho$	seen		\dagger
$\pi(1300) \pi$	seen		143
$a_{1}(1260) \pi$	seen		217
$\eta \eta$	$(5.1 \pm 0.9) \%$	1.4	515
$\eta \eta^{\prime}(958)$	$(1.9 \pm 0.8) \%$	1.7	\dagger
$K \bar{K}$	$(8.6 \pm 1.0) \%$	1.1	568
$\gamma \gamma$	not seen		752

${ }_{1}{ }^{G}\left(J^{P C}\right)=0^{+}\left(0^{++}\right)$
Mass $m=1723_{-5}^{+6} \mathrm{MeV} \quad(\mathrm{S}=1.6)$
Full width $\Gamma=139 \pm 8 \mathrm{MeV} \quad(\mathrm{S}=1.1)$
$f_{0}(1710)$ DECAY MODES

$K \bar{K}$	seen	$p(\mathrm{MeV} / c)$
$\eta \eta$	seen	706
$\pi \pi$	seen	665
$\omega \omega$	seen	851

Consensus?

- The glueball is expected to be predominant in either the $f_{0}(1500)$ or the $f_{0}(1710)$.
- Not much of a consensus \rightarrow V. Mathieu et al. Int.J.Mod.Phys. E18 (2009) 1-49.
- Recent years \rightarrow not much of an improvement.
- $f_{0}(1500) \rightarrow 0.89|g g\rangle$ Giacosa et al. Phys.Rev. D72 (2005) 094006.
- $f_{0}(1710) \rightarrow 0.93|g g\rangle$ Albaladejo-Oller Phys.Rev.Lett. 101 (2008) 252002.

Table of Content

1 Introduction
1.1 Motivation
1.2 Data

3 Coupled channel

4 Future prospects

Data: Glueball "rich" experiments

- Pomeron collisions
- $p \bar{p}$ anihilation

- J / ψ radiative decays considered the golden channel for glueballs.

Data: BESIII $J / \psi \rightarrow \gamma \pi \pi$

- Data on $J / \psi \rightarrow \gamma \pi \pi$ half a million events.

- 3 prominent f_{0} 's with similar couplings.
- The $2^{++} E 1$ partial wave is dominated by the $f_{2}(1270)$.

Data: BESIII $J / \psi \rightarrow \gamma K \bar{K}$

- Another 3 prominent f_{0} 's

- The couplings are fairly different, with a way more prominent $f_{0}(1710)$.
- The $2^{++} E 1$ partial wave is dominated by the $f_{2}^{\prime}(1525)$.

Data: BESIII J / ψ

- How many f_{0} do we have here?

- Is the coupling of the $f_{0}(1710)$ greater \rightarrow glueball hint?

Table of Content

Fintroduction
 1.1 Motivatio
 1.2.Data

2 Method

3 Coupled channel

4 Future prospects

Method

- Based on ar et al. Phys.Rev.Lett. (2019), A.Jackura et al. Phys.Lett.B (2018)
- Peripheral production \Rightarrow factorization of the pomeron \Rightarrow $\operatorname{Ima}(s)=\rho(s) t^{*}(s) a(s)$.
- Amplitude built around
$t(s)=\frac{N(s)}{D(s)}$ method
$\Rightarrow a(s)=p^{2} q \frac{n(s)}{D(s)}$.
- They are smooth polynomials $n(s)=\sum_{j} a_{j} w^{j}(s)$, where $w(s)=\frac{s}{s+s_{0}}$.

Method

- $N(s)$ and $n(s)$ are process dependent, they have only left hand cuts.
- $\mathrm{D}(\mathrm{s})$ has a right hand cut, altogether $t(s)$ has the correct analytic structure.

- By adding this discontinuity over the RHC one could go to the direct continuous Riemann sheet.

Table of Content

FIntroduction

3 Coupled channel

4 Future prospects

Coupled channel

- $\eta^{\left({ }^{\prime}\right)} \pi$ coupled channel up to 2 GeV .
- We use a K-matrix approach with a Chew-Mandelstam phase space.

$$
\begin{aligned}
D^{J}(s)_{k i} & =\left(K^{J}(s)^{-1}\right)_{k i}-\frac{s}{\pi} \int_{s_{k}}^{\infty} d s^{\prime} \frac{\rho\left(s^{\prime}\right) N_{k i}^{J}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)} \\
\rho N_{k i}^{J}\left(s^{\prime}\right) & =\delta_{k i} \frac{\lambda^{J+1 / 2}\left(s^{\prime}, m_{\eta^{\prime},}^{2}, m_{\pi}^{2}\right)}{\left(s^{\prime}+s_{L}\right)^{2 J+1+\alpha}} \\
K_{k i}^{J}(s) & =\sum_{R} \frac{g_{k}^{J, R} g_{i}^{J, R}}{m_{R}^{2}-s}+c_{k i}^{J}+d_{k i}^{J} s
\end{aligned}
$$

- Just 1 K-matrix pole for the P-wave.

Coupled channel analysis

- We use an average of 6 parameters for each figure.
- $\chi^{2} \approx 1.3$, no significant deviation for any partial wave.
- 1 K-matrix pole produces 2 different peaks for the P -wave \rightarrow 300 MeV distance.

Poles

- Statistical uncertainties calculated through bootstraping
- $m\left(a_{2}\right)=1306.0 \pm 0.8 \pm 1.3 \mathrm{MeV}$ $\Gamma\left(a_{2}\right)=114.4 \pm 1.6 \pm 0.0$ MeV
- $m\left(a_{2}^{\prime}\right)=1722 \pm 15 \pm 67 \mathrm{MeV}$ $\Gamma\left(a_{2}^{\prime}\right)=247 \pm 17 \pm 63 \mathrm{MeV}$
- $m\left(\pi_{1}\right)=1564 \pm 24 \pm 86 \mathrm{MeV}$ $\Gamma\left(\pi_{1}\right)=492 \pm 54 \pm 102 \mathrm{MeV}$.
- All systematics (diferent LHC masses, numerator models ...) included.

$J / \psi \rightarrow \gamma m_{1} m_{2}$
- Slightly different kinematics

- Left hand cut $\rightarrow s=0 \mathrm{GeV}$.
- Ima $(s)=\rho(s) t(s)^{*} a(s)$
- $t(s) \rightarrow \pi \pi, K \bar{K}$ scattering.
π / K

π / K

Coupled-channel scenario

- Fit from 1 GeV to $2.5 \mathrm{GeV}, \chi^{2} \approx 1.5$.
- Interested in the f_{0}.
- Coupled channel between just $\pi \pi$ and $K \bar{K}$.
$\mathrm{J} / \psi \rightarrow \gamma \pi \pi$ (S wave)

Complex plane

- We use the analytical properties of the parameterization \rightarrow complex plane continuation.

- $m\left(f_{0}(1500)\right)=1460 \mathrm{MeV}$
- $m\left(f_{0}(1710)\right)=1800 \mathrm{MeV}$
- $m\left(f_{0}(210)\right)=1970 \mathrm{MeV}$
$\Gamma\left(f_{0}(1500)\right)=85 \mathrm{MeV}$.
$\Gamma\left(f_{0}(1710)\right)=190 \mathrm{MeV}$.
$\Gamma\left(f_{0}(1710)\right)=490 \mathrm{MeV}$.

Scalar poles

- Complex plane plots

- Few "spurious" poles, all far from real axis

Improvements: σ description

- Tree level ChPT $\rightarrow T^{0}(s, t) \propto \frac{s-M_{\pi}^{2} / 2}{f_{\pi}^{2}}$.
- PCAC \rightarrow Adler zero $\rightarrow K_{k i}^{J} \propto\left(s-s_{A}\right)$.

$$
K_{k i}^{J}(s)=\frac{s-s_{A}}{s}\left[\sum_{R} \frac{g_{k}^{J, R} g_{i}^{J, R}}{m_{R}^{2}-s}+c_{k i}^{J}+d_{k i}^{J}\right],
$$

- Dispersive Adler zero located at $s_{A}=85 \mathrm{MeV}^{2}$.GKPRY Phys.Rev.D (2012)

Improvements: σ description

- Wrong behavior at low energies.
- Even the Adler zero is not sufficent to directly accommodate the σ pole.
- Bump produced by the background+phase space
- Solution \rightarrow including $\pi \pi$ data.

Table of Content

I Introduction
1.1 Motivatio
1.2. Data

3 Coupled channel

4 Future prospects

Future Prospects: Dispersive $\pi \pi$ description

- Can be done using $T=V+V G T$, Ropertz-Kubis-Hanhart Eur.Phys.J. c78 (2018) $\bar{B}_{s}^{0} \rightarrow J / \psi \pi \pi / K \bar{K}$.
- Omnés-like factorization of the

$$
\sigma \rightarrow T=T_{\sigma}+\Omega\left[1-V_{R} \Sigma\right]^{-1} \Omega^{t} .
$$

- $\operatorname{Im} \Omega_{i j}=\left(T_{0}\right)_{i m}^{*} \sigma_{m} \Omega_{m j}$.
- Used to accommodate the low energy $\pi \pi$ dispersive input.

Summary

- Implementation of a coupled-channel formalism \rightarrow In progress.
- Description of the features of $3 f_{0}$'s.
- Description of the $\sigma \rightarrow \ln$ progress.
- Inclusion of the dispersive $\pi \pi$ result \rightarrow Next step.

Thank you for your attention!

