Physics with higher energy electrons

Alessandro Pilloni

GlueX Collaboration Meeting, May 25th, 2022

M. Albaladejo et al. [JPAC], 2008.01001

Snowmass Lol RF7_RF0_120, White paper 2203.08290

Hadron Spectroscopy in Photoproduction

Miguel Albaladejo¹, Lukasz Bibrzycki², Sean Dobbs³, César Fernández-Ramírez^{4,5}, Astrid N. Hiller Blin⁶, Vincent Mathieu^{7,8}, Alessandro Pilloni^{9,10}, Justin Stevens¹¹, Adam P. Szczepaniak^{12,13,14}, and Daniel Winney^{13,14,15,16}

X(3872)

Sizeable prompt production at hadron colliders, $\sim 5\%$ of $\psi(2S)$

 $\sigma_{PR} \times B(X \rightarrow J/\psi \pi \pi) = (1.06 \pm 0.11 \pm 0.15) \text{ nb } @CMS$

- Discovered in $B \to K X \to K J/\psi \pi \pi$
- Quantum numbers 1⁺⁺
- Very close to DD* threshold
- Too narrow for an abovetreshold charmonium
- Isospin violation too big $\frac{\Gamma(X \to J/\psi \ \omega)}{\Gamma(X \to J/\psi \ \rho)} \sim 0.8 \pm 0.3$
- Mass prediction not compatible with $\chi_{c1}(2P)$

 $M = 3871.68 \pm 0.17 \text{ MeV}$ $M_X - M_{DD^*} = -3 \pm 192 \text{ keV}$ $\Gamma = 1.19 \pm 0.19 \text{ MeV}$

Charged *Z* states: $Z_c(3900), Z'_c(4020)$

Charged quarkonium-like resonances have been found, 4q needed

Two states $J^{PC} = 1^{+-}$ appear slightly above $D^{(*)}D^*$ thresholds

$$e^+e^- \rightarrow Z_c(3900)^+\pi^- \rightarrow J/\psi \ \pi^+\pi^- \text{ and } \rightarrow (DD^*)^+\pi^-$$

 $M = 3888.7 \pm 3.4 \text{ MeV}, \ \Gamma = 35 \pm 7 \text{ MeV}$
 $e^+e^- \rightarrow Z_c'(4020)^+\pi^- \rightarrow h_c \ \pi^+\pi^- \text{ and } \rightarrow \overline{D}^{*0}D^{*+}\pi^-$
 $M = 4023.9 \pm 2.4 \text{ MeV}, \ \Gamma = 10 \pm 6 \text{ MeV}$

A. Pilloni – Physics with higher energy electrons

Pentaquarks!

LHCb, PRL 115, 072001 LHCb, PRL 117, 082003 Two states seen in $\Lambda_b \rightarrow (J/\psi p) K^-$, evidence in $\Lambda_b \rightarrow (J/\psi p) \pi^ M_1 = 4380 \pm 8 \pm 29 \text{ MeV}$ $\Gamma_1 = 205 \pm 18 \pm 86 \text{ MeV}$ $M_2 = 4449.8 \pm 1.7 \pm 2.5 \text{ MeV}$ $\Gamma_2 = 39 \pm 5 \pm 19 \text{ MeV}$

Quantum numbers $J^{P} = \begin{pmatrix} 3^{-}, 5^{+} \\ \frac{5}{2}, \frac{5^{+}}{2} \end{pmatrix} \text{ or } \begin{pmatrix} 3^{+}, 5^{-} \\ \frac{5}{2}, \frac{5^{+}}{2} \end{pmatrix} \text{ or } \begin{pmatrix} 5^{+}, 3^{-} \\ \frac{5^{+}}{2}, \frac{3^{-}}{2} \end{pmatrix}$

LHCb, PRL 122, 222001

Higher statistics analysis revealed a twopeak structure of the narrow state, plus a new lighter one Quantum numbers still unknown

A. Pilloni – Physics with higher energy electrons

Models

Compact

Extended

Hybrids Containing gluonic degrees of freedom Multiquark Several (cluster) of valence quarks

Hadroquarkonium

Heavy core interacting with a light cloud via Van der Waals forces

Rescattering effects

Structures generated by cross-channel rescattering, very process-dependent

Molecule

Bound or virtual state generated by long-range exchange forces

Exotic landscape

Broad mesons seen in *b* decay: *X*(4140), *Z*(4430), *Z*_{cs}(4000)...

Scarce consistency between various production mechanisms

Narrow structures seen in b decay: $X(3872), P_c, (P_{cs})$

Narrow structures seen in e^+e^- : X(3872), Y(4260), $Z_{c,b}^{(\prime)}$

A. Pilloni – Physics with higher energy electrons

Why photoproduction?

- It's new: no XYZ state has been uncontroversially seen so far
- It is free from rescattering mechanisms that could mimic resonances in multibody decays
- The framework is (relatively) clean from a theory point of view
- Radiative decays offer another way of discerning the nature of the states

- XYZ have not been seen in photoproduction so far : independent confirmation
- Not affected by 3-body dynamics: determination of resonant nature
- Experiments in the appropriate energy range are promising
- We study near-threshold (LE) and high energies (HE)
- Couplings from data as much as possible, not relying on the nature of XYZ

- XYZ have not been seen in photoproduction so far : independent confirmation
- Not affected by 3-body dynamics: determination of resonant nature
- Experiments in the appropriate energy range are promising
- We study near-threshold (LE) and high energies (HE)
- Couplings from data as much as possible, not relying on the nature of XYZ

- XYZ have not been seen in photoproduction so far : independent confirmation
- Not affected by 3-body dynamics: determination of resonant nature
- Experiments in the appropriate energy range are promising
- We study near-threshold (LE) and high energies (HE)
- Couplings from data as much as possible, not relying on the nature of XYZ

 $<\lambda_{\mathcal{Q}}\lambda_{N}'|T|\lambda_{\gamma}\lambda_{N}>=\sum_{V,\mathcal{E}}\frac{ef_{V}}{m_{V}}\mathcal{T}_{\lambda_{V}=\lambda_{\gamma},\lambda_{\mathcal{Q}}}^{\alpha_{1}\cdots\alpha_{j}}\mathcal{P}_{\alpha_{1}\cdots\alpha_{j};\beta_{1}\cdots\beta_{j}}\mathcal{B}_{\lambda_{N}\lambda_{N}'}^{\beta_{1}\cdots\beta_{j}}$

Top vertex from measured $\mathcal{Q} \rightarrow V\mathcal{E}$ decay width

- XYZ have not been seen in photoproduction so far : independent confirmation
- Not affected by 3-body dynamics: determination of resonant nature
- Experiments in the appropriate energy range are promising
- We study near-threshold (LE) and high energies (HE)
- Couplings from data as much as possible, not relying on the nature of XYZ

 $<\lambda_{\mathcal{Q}}\lambda_{N}'|T|\lambda_{\gamma}\lambda_{N}>=\sum_{V,\mathcal{E}}\frac{ef_{V}}{m_{V}}\mathcal{T}_{\lambda_{V}=\lambda_{\gamma},\lambda_{\mathcal{Q}}}^{\alpha_{1}\cdots\alpha_{j}}\mathcal{P}_{\alpha_{1}\cdots\alpha_{j};\beta_{1}\cdots\beta_{j}}$

Bottom vertex from standard photoproduction pheno, exponential form factors to further suppress large t

Threshold vs. high energy

- Fixed-spin exchanges expected to hold in the low energy region
- t channel grows as s^j, exceeding unitarity bound, Regge physics kicks in: Reggeized tower of particles with arbitrary spin at HE

Z photoproduction

- The Zs are charged charmoniumlike 1^{+-} states close to open flavor thresholds
- Focus on $Z_c(3900)^+ \rightarrow J/\psi \pi^+$, $Z_b(10610)^+$, $Z_b'(10650)^+ \rightarrow \Upsilon(nS) \pi^+$
- The pion is exchanged in the t-channel

A. Pilloni – Physics with higher energy electrons

X photoproduction

- Focus on the famous $1^{++} X(3872) \rightarrow J/\psi \rho, \omega$
- Studying also $X(6900) \rightarrow J/\psi J/\psi$ (assumed 0⁺⁺)
- ω and ρ exchanges give main contributions: need to assume the existence of a OZI-suppressed $X(6900) \rightarrow J/\psi \omega$

Another \tilde{X} ?

$\widetilde{X}(3872)$ as a new state 🎾

 $m_{\tilde{X}(3872)} = (3860.0 \pm 10.4) MeV/c^2$ $\Gamma_{\tilde{X}(3872)} < 51 MeV/c^2 (CL=90\%)$ Significance (including systematics) is 4.1 σ C=-1 (?)

A. Guskov

COMPASS claimed the existence of a state degenerate with the X(3872), but with C = 1

Large photoproduction cross section

At COMPASS conditions: $\sigma_{\mu N} \approx \sigma_{\gamma N} / 300$ EIC L=10³⁴ cm⁻² s⁻¹ $e^{-}N \rightarrow e^{-}\widetilde{X}(3872)\pi^{\pm}N' \rightarrow$ $\rightarrow e^{-}J/\psi\pi^{+}\pi^{-}\pi^{\pm}N' \rightarrow e^{-}\mu^{+}\mu^{-}\pi^{+}\pi^{-}\pi^{\pm}N'$

~10 events per day

Diffractive production, dominated by Pomeron (2-gluon) exchange

$$R_Y = \frac{ef_{\psi}}{m_{\psi}} \sqrt{\frac{g^2(Y \to \psi \pi \pi)}{g^2(\psi \to \psi g g)}} \frac{g^2(\psi' \to \psi g g)}{g^2(\psi' \to \psi \pi \pi)}$$

Existing data allow to put a 95% upper limit on the ratio of $\psi'/Y(4260)$ yields

Assuming previous formula, one gets: $\Gamma_{ee}^{Y} = 930 \ eV$ (cfr. hep-ex/0603024, 2002.05641) $BR(Y \rightarrow J/\psi\pi\pi) = 0.96\%$ $R_{Y} = 0.84$

Primakoff X photoproduction

Using measurement of $\Gamma(X \rightarrow \gamma \gamma^*)$ from Belle, one can get predictions for Primakoff

Makes use of ion targets, enhancement of cross sections as Z^2

A. Pilloni – Physics with higher energy electrons

If the target fragments are separated from the beam ones, one can invoke Regge factorization

Quark-Regge duality allows to replace the intermediate hadrons with Pomeron , prediction reliable for $x_B \sim 1$, $t \ll W_{\gamma p}^2$

Diffractive semi-inclusive Z_c ph.

An example of yield estimate

- Example with an ideal SuperCEBAF
- $E_{\text{lab}} \sim 20 \text{ GeV}$, photon flux $10^8 \gamma/\text{s}$
- Typical target, 500 pb⁻¹ /yr
- Assuming efficiency 1%

$W_{\gamma p} (\text{GeV})$	σ (nb)	$\mathcal{B}(\mathcal{Q} \to \ell^+ \ell^- n\pi) \; (\times 10^{-3})$	Counts	Comparison
6	33.1	5.3	877	~ 90 [52]
	15.9	12.5	994	$\sim 1300~[15]$
15	2.8	2.6	36	$\sim 750~[53]$
15	0.66	2.1	7	~ 200 [53]
		$\mathcal{B}(J/\psi \to \ell^+ \ell^-)^2 \ (\times 10^{-3})$		
12	1.9	14	133	~ 800 [32]
	$W_{\gamma p}$ (GeV) 6 15 12	$ \begin{array}{c} W_{\gamma p} (\text{GeV}) & \sigma (\text{nb}) \\ \hline 6 & 33.1 \\ 15.9 \\ 15 & 2.8 \\ 0.66 \\ \hline 12 & 1.9 \end{array} $	$W_{\gamma p}$ (GeV) σ (nb) $\mathcal{B}(\mathcal{Q} \to \ell^+ \ell^- n\pi)$ (×10 ⁻³) 6 33.1 5.3 15 15.9 12.5 15 2.8 2.6 15 0.66 2.1 $\mathcal{B}(J/\psi \to \ell^+ \ell^-)^2$ (×10 ⁻³) 12 1.9 14	$W_{\gamma p}$ (GeV) σ (nb) $\mathcal{B}(\mathcal{Q} \to \ell^+ \ell^- n\pi)$ (×10 ⁻³)Counts633.15.3877115.912.5994152.82.6360.662.17 $\mathcal{B}(J/\psi \to \ell^+ \ell^-)^2$ (×10 ⁻³)121.914133

Conclusions

- Photoproduction is a valuable tool to study exotic states
- Complementary infomation to other mechanisms
- Facilities to study photoproduction at low energies are very welcome to pursue this program

Thank you!

Joint Physics Analysis Center

Exclusive reactions: 2008.01001

Inclusive reactions: to appear

Code available on https://github.com/ dwinney/jpacPhoto

BACKUP

Exclusive P_c photoproduction

At Jlab12 measurements of direct P_c production are being performed

Using VMD, BR($P_c \rightarrow J/\psi p$) ~ 1%

Polarized P_c photoproduction

 $\sim s^{\alpha(u)}$

- s channel resonances significant at low energies: u channel dominates at high energies
- Main background from N(*) trajectories
- Estimated P_c coupling upper bound of same order of magnitude as $N^{(*)}$ coupling
- Reggeization suppresses P_c due to larger mass (smaller trajectory intercept)
- We estimate that the P_c trajectories will hardly be visible at the EIC
- *P*_b searches still possible: *s* channel at higher energies!

Cao et al., Phys.Rev. D 101, 074010 (2020) E. Paryev, arXiv:2007.01172 [nucl-th] (2020)

• Focus on the $1^{--} Y(4260) \rightarrow J/\psi \pi^+\pi^-$, check with $\psi' \rightarrow J/\psi \pi^+\pi^-$

- Diffractive production, dominated by Pomeron (2-gluon) exchange
- Good candidates for EIC: diffractive production increases with energy!
- We have $\gamma\psi$ -pomeron coupling from our analyses 1606.08912, 1907.09393

How to rescale from J/ψ to ψ' ?

$$R_{\psi'} = \sqrt{\frac{g^2(\psi' \to \gamma gg)}{g^2(\psi \to \gamma gg)}} \sim 0.55 \qquad g^2(\psi \to \gamma gg) = \frac{6m_{\psi}\mathcal{B}(\psi \to \gamma gg)\Gamma_{\psi}}{PS(\psi \to \gamma gg)}$$

• Focus on the $1^{--} Y(4260) \rightarrow J/\psi \pi^+\pi^-$, check with $\psi' \rightarrow J/\psi \pi^+\pi^-$

- Diffractive production, dominated by Pomeron (2-gluon) exchange
- Good candidates for EIC: diffractive production increases with energy!
- We have $\gamma\psi$ -pomeron coupling from our analyses 1606.08912, 1907.09393

How to rescale from J/ψ to Y(4260) ?

We assume VMD and $g^2(Y \to \psi \pi \pi) = g^2(Y \to \psi gg) \times g^2(gg \to \pi \pi)$ (Novikov & Shifman)

$$R_Y = \frac{ef_{\psi}}{m_{\psi}} \sqrt{\frac{g^2(Y \to \psi \pi \pi)}{g^2(\psi \to \gamma gg)}} \frac{g^2(\psi' \to \psi gg)}{g^2(\psi' \to \psi \pi \pi)}$$

Caveat : $BR(Y \rightarrow \psi \pi \pi)$ only known times the leptonic width Γ_{ee}^{Y}

Existing data allow to put a 95% upper limit on the ratio of $\psi'/Y(4260)$ yields

Assuming previous formula, one gets: $\Gamma_{ee}^{Y} = 930 \ eV$ (cfr. hep-ex/0603024, 2002.05641) $BR(Y \rightarrow J/\psi\pi\pi) = 0.96\%$ $R_{Y} = 0.84$

If the target fragments are separated from the beam ones, one can invoke Regge factorization

Quark-Regge duality allows to replace the intermediate hadrons with Pomeron , prediction reliable for $x_B \sim 1$, $t \ll W_{\gamma p}^2$

Semi-inclusive *X* production

For large Q^2 one can invoke NRQCD factorization to describe quarkonium(-like) production

$$d\sigma(e^- + p \to H + X) = \sum d\sigma(e^- + p \to Q\overline{Q}(n) + X) \langle \mathcal{O}^H(n) \rangle$$

Н

X

n

Perturbative partonic matrix element, calculable

Nonperturbative transition matrix element $Q\overline{Q} \rightarrow H$ fitted from data

X. Yao

Semi-inclusive X production

One can assume the same NRQCD factorization for exotics, independent of their internal structure

$$\sigma[X(3872)] = \sum_{n} \hat{\sigma}[c\bar{c}_{n}] \langle \mathcal{O}_{n}^{X} \rangle.$$

 $Br[X \to J/\psi \pi^{+}\pi^{-}] \left(\langle \mathcal{O}_{8}^{X}(^{3}S_{1}) \rangle + 0.159 \ \langle \mathcal{O}_{8}^{X}(^{1}S_{0}) \rangle + 0.085 \ \langle \mathcal{O}_{1}^{X}(^{1}S_{0}) \rangle \right.$ $\left. + 0.00024 \ \langle \mathcal{O}_{1}^{X}(^{3}S_{1}) \rangle \right) = (2.7 \pm 0.6) \times 10^{-4} \text{ GeV}^{3}$ Artoisenet and Braaten, PRD81, 114018 from Tevatron data

If one consider the first term only, it leads to

$$Br[X \to J/\psi \pi^+ \pi^-] \sigma(X(3872), Q^2 > 1 \text{ GeV}) \approx 2.6 \text{ pb}$$
 $\sqrt{s} = 100 \text{ GeV}$

A. Pilloni - Physics with higher energy electrons

x. yao