Written test of Advanced Quantum Mechanics

Alessandro Pilloni (Dated: 07/06/2024)

Exam time: 2 hours. You can use the Clebsch-Gordan sheet by PDG.

EXERCISE 1

A spin 1/2 particle constrained to move on a sphere has a wave function

$$\psi = A\sin\theta\cos\phi\left(3\chi_{+} + 4e^{i\alpha}\chi_{-}\right) \tag{1}$$

where A is a normalization constant, α is a constant phase, χ_{\pm} are the eigenstates of S_z with eigenvalues $\pm \hbar/2$, respectively.

- (a) If a measurement of J^2 , where $\mathbf{J} = \mathbf{L} + \mathbf{S}$, is performed on ψ , what values can be obtained and with what probability?
- (b) A measurement of L_z is performed on ψ, obtaining ħ, and immediately after, a measurement of J_z obtaining ħ/2. Write the normalized wave function ψ₁ of the system after the two measurements.
- (c) The system with wave function ψ_1 evolves with Hamiltonian

$$H = \frac{\omega}{\hbar} J^2.$$
⁽²⁾

Calculate the measurable values of L_z at time t and their respective probabilities.

EXERCISE 2

Consider two identical particles with spin 1/2 and mass m that interact in the center-of-mass system with Hamiltonian

$$H_0 = \frac{p^2}{m} + \frac{1}{4}m\omega^2 r^2 + 2\frac{\alpha}{\hbar}\mathbf{L}\cdot\mathbf{S}$$
(3)

where r is the relative position, p the corresponding conjugate momentum, **L** the orbital angular momentum, and $\mathbf{S} = \mathbf{S}_1 + \mathbf{S}_2$ the total spin. Assume $\alpha \ll \omega$.

Calculate the energy of the ground state and the first three excited state and their degeneracies.